宍道湖・中海水質調査結果(2013年度)

佐藤紗知子・中島結衣・小山維尊・岸 真司・藤原敦夫・神谷 宏

1. はじめに

当研究所では、1971年度より宍道湖および中海について、1992年度より本庄水域について、水質の現況並びに環境基準達成状況の把握を目的に水質調査を行っている。本年度のこれらの調査結果の概要を報告する。

2. 調査内容

図1に示す宍道湖8地点、中海9地点および本庄水域2地点の計19地点において毎月1回調査を行った。各地点において水面下0.5m(上層)と湖底上1.0m(下層)で採水した。調査項目および分析方法を表1に示す。

3. 調査結果

3. 1 2013年度の状況

表2に宍道湖、中海および本庄水域の上層および下層の月毎の平均値と年平均値を示す。宍道湖はS5を除く7地点、中海はN-2~6、N-Hの6地点、本庄水域はNH-1、2の2地点について算出した。

宍道湖について

全りんは4月から7月は10年平均値よりも高く、10月と11月は10年平均値の半分以下となった。塩化物イオン濃度経月変化は、10年平均と比較して、春~夏は高く、秋~冬は低く、2012年と反対の傾向だった(図 $2-1\sim5$ 参照)。

宍道湖では2010年~2012年まで3年連続してアオコが発生したが、本年度は大規模な発生はなかった。

中海について

11月~12月、2月~3月の上層のCOD及びクロロフィルーaが10年平均より高かったが、これは11月及び2月に赤潮が発生したことによるものと考えられる。上層の全窒素、全りんの月別変化は、2月を除くと10

年平均と同じような挙動を示した。塩化物イオン濃度 の月別変化は、10年平均と比較して宍道湖と同様に春 ~夏は高く、秋~冬は低かった(図3-1~5参照)。

本庄水域について

11月の上層のCOD、クロロフィルー a、全窒素、全りん全でが10年平均より高かったが、これは11月に赤潮が発生したことによるものと考えられる。塩化物イオン濃度の月別変化は、10年平均と比較して宍道湖、中海と同様に春~夏は高く、秋~冬は低かった(図 $4-1\sim5$ 参照)。

なお、本年度の松江地域の気象状況は、年間平均気温が平年値より0.7℃高かった。年間降水量は2290 mmであり、平年値よりも500mm多かった。特に8月から10月の降水量は平年値の1.8倍多かった(表3参照)。

3. 2 経年変化

宍道湖、中海および本庄水域の上層について、1984年度以降今年度までの水質経年変化(COD、クロロフィルーa、全窒素、全りん、塩化物イオン濃度)を図5-1~5に示す。

宍道湖上層では、COD、クロロフィルーa、全窒素、全りん、塩化物イオン濃度全て、昨年度と比べて減少したが、10年平均値より高い値だった。

中海上層では、COD、クロロフィルーa、全窒素が昨年度と比べて増加した。塩化物イオン濃度は、昨年度と比べて減少した。。

本庄水域上層については、COD、クロロフィルーa、全窒素、全りんは昨年度と比べて増加した。特にクロロフィルーaは10年平均値の2倍の値となった。 塩化物イオン濃度は昨年度よりも低下し10年平均と近い値となった。

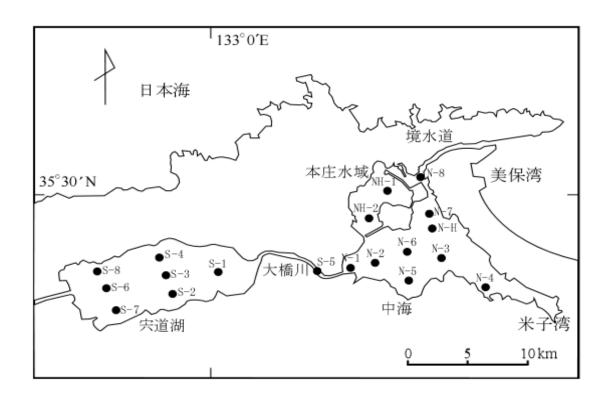
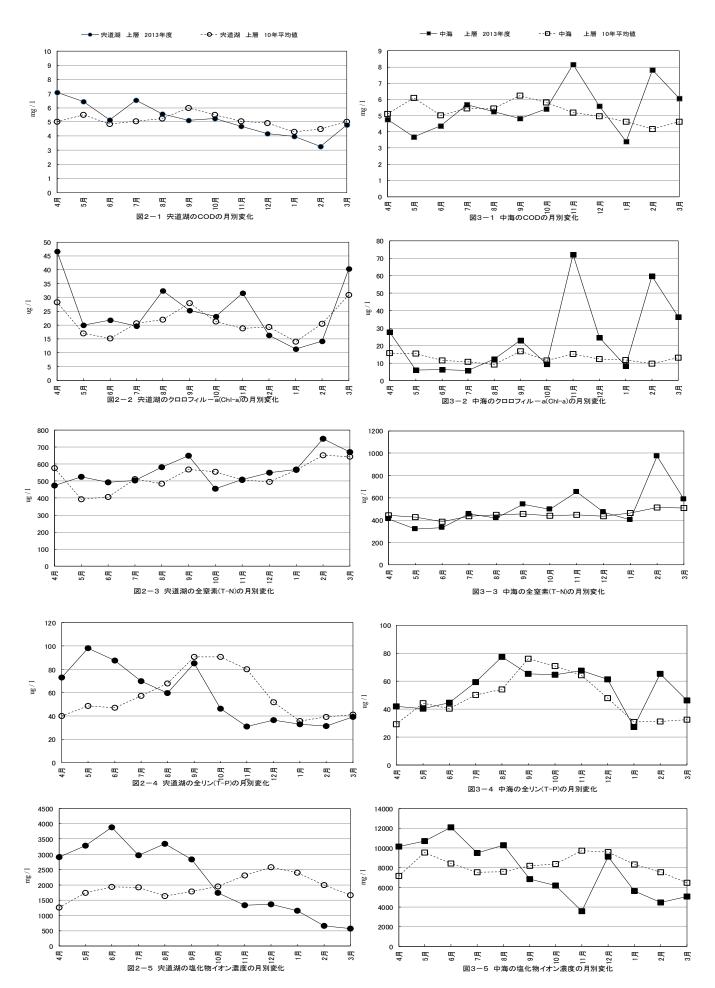


表1. 調査項目と分析方法

調査項目	略号	分析方法
気温	AT	サーミスタ温度計
水温	WT	II
透明度	SD	セッキー板法
水色	WC	フォーレル・ウーレ水色標準液
溶存酸素	DO	光学式(蛍光)
水素イオン濃度	pН	ガラス電極法
電気伝導度	EC	白金電極電気伝導度計
塩素イオン	Cl	モール法
浮遊物質	SS	ワットマンGF/Cでろ過、105℃乾燥、セミミクロン天秤で測定
化学的酸素要求量(酸性法)	COD	100℃における過マンガン酸カリウムによる酸素消費量(COD _{Mn})
溶存性化学的酸素要求量	D-COD	ワットマンGF/Cでろ過したろ液のCODを溶存性化学的酸素要求量(D-COD)とする
懸濁性化学的酸素要求量	P-COD	(COD) - (D - COD)
クロロフィルa量	Chl-a	Strickland&Parsonsの方法
フェオ色素	Pheo	Lorenzenの方法
全窒素	TN	熱分解法 微量全窒素分析装置で測定
溶存性窒素	DN	ワットマンGF/Cでろ過したろ液のTNを溶存性窒素(DN)とする
溶存性有機窒素	DON	(DN) - (DIN)
溶存性無機窒素	DIN	(NH4-N) + (NO2-N) + (NO3-N)
懸濁性窒素	PN	(TN) - (DN)
アンモニア態窒素	NH_4-N	インドフェノール青法(TRAACS2000)
亜硝酸態窒素	NO_2-N	ナフチルエチレンジアミン吸光光度法(TRAACS2000)
硝酸態窒素	NO_3-N	銅・カドミカラム還元-ナフチルエチレンジアミン吸光光度法(TRAACS2000)
全りん	TP	ペルオキソニ硫酸カリウム分解-りん酸態りん分析法(TRAACS2000)
溶存性りん	DP	ワットマンGF/Cでろ過したろ液のTPを溶存性りん(DP)とする
溶存性有機りん	DOP	$(DP) - (PO_4 - P)$
懸濁性りん	PP	(TP) - (DP)
りん酸態りん	PO_4-P	アスコルビン酸還元-モリブデン青法(TRAACS2000)
溶存性マンガン	D-Mn	ICP質量分析法
溶存性鉄	D-Fe	II
溶存性シリカ	D-Si	アスコルビン酸還元-モリブデン青法(TRAACS2000)

表2 宍道湖・中海の水質調査結果(その1)


宍道湖 上層

D-Si	mg/l	3.4	2.4	3.6	4.0	3.0		2, 0	2.4	2.4	4.7	4.4	5.2	3.5		D-Si	mg/1	3.3	2.4	3.6	4.1	2.9		2.8	2.3	2.2	4.3	4.0	4.9	3.4		D-Si	mg/l	1.5	1.7	2.1	2.6	1.7	1.8	2.6		1.5 0	i ~	3.7	2.3
	mg/1	0.0		0.0		0.0				0.0	0.0	0.0	0.0	0.0		D-Fe	mg/1	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			mg/l				0.0				0.0	0.0		0.0	0.0
		0.	. 2	0.	0.	0.	0.	0.	0.	0.	0.		0.	0.				. 2	.2	0.	0.	-:	0.	0.	0.	0.	0.		0.	0.				0.	0.	0.	0.	0.	0.		0.				0.
D-Mn	mg/1	2	∞	6	7	2 0.	_ ,		4 0		0 0	0 9	1 0	8 0.		D-Mn	mg/1		3 0.	2	0	4	0	6	3	2	2	8 0.		9 0.		D-Mn	mg/1		2 0			2	0	4 0	1 0.	n r		2 0.	9 0.
P04-P	μ g/1	1.	ij	13.	i	.	43.	o ·	o.	2.	-i	ij	1.	5.		P04-P	μ g/1		2.	20.	23.	-;	64.	0.	0.	2.		0.	1	.6		P04-P	μ g/1	2.	2	5.	-i	18.	20.	.; ·		ه د	; c		4
PP	μ g/1	61	28	45	43	ကြေး	35	200	22	26	25	22	31	38		ЬЬ	μ g/1	63	79	37	39	36	34	32	24	30	32	30	38	40		PP	μ g/1	30	25	21	38	40	29	35	54	17	5.4	33	35
DOP	μ g/1	11	18	28	26	25	- 0	Σ, α	ი	∞	7	8	7	14		DOP	μ g/1	10	18	25	30	25	7	16	6	8	∞	6	7	14		DOP	μ g/1	10	13	19	200	18	16	87.7	E :	11 6	, =	9	15
DP	μ g/1	12	20	42	27	27	00.	Σ 0	ත	10	∞	6	8	20		DP	μ g/1	12	21	45	53	56	71	17	6	11	6	10	∞	24		DP	μ g/1	12	15	24	70	37	98 8	67.	E	0 0	2 =	9	20
TP	μ g/1	73	86	88	70	09	82	46	31	36	33	31	39	28		TP	μ g/1	74	66	83	92	62	105	48	33	41	41	40	46	64		TP	μ g/1	42	40	45	23	22	65	65	89 7	10	2 25	42	22
NO3-N	μ g/1	3		-	- ;	02 50	G 6	95 G	506	242	301	440	256	134		N03-N	μ g/1	1	-		3	17	62	38	202	241	266	392	218	120		N-E0N	μ g/1	-	- 5		27 (2 2	2))	6 i	21 166	203	272	42
N02-N	μ g/1	-		-	0	- 0	n 0	71 0	6	7	4	4	5	3		N02-N	μ g/1	1	П		-	-	3	3	10	<u>.</u>	4	2	2	3		NO2-N	μ g/1	-		0	0 (0 0	.77 -	- c	.7 -	- LC	0 4	· 60	2
NH4-N	μ g/1	3	9	15	10	37	791	5.2	12	14	5	10	5	25		NH4-N	μ g/1	7	9	56	51	88	265	104	24	20	က	13	9	51		NH4-N	μ g/1	9	6	∞ .	4 1	2	07.	2 .	21 6	0 9	0	6	10
PN	μ g/1	274	297	226	260	528	21.0	1.75	184	149	123	130	267	210		PN	μ g/1	333	302	180	226	233	163	149	182	143	181	213	353	222		PN	μ g/1	248	140	123	211	200	503	186	426	111	583	433	260
DIN	μ g/1	7	∞	17	12	59	760	0.4	231	263	309	454	266	162		DIN	μ g/1	6	7	28	22	107	329	145	236	268	273	409	230	175		DIN	μ g/1	6	12	o (9 1	7	94	11	, d	177	207	39	54
NOO	μ g/1	193	220	249	232	263	212	717	95	138	136	163	137	188		NOO	μ g/1	201	228	248	244	277	229	230	108	144	159	175	143	199		DON	μ g/1	153	168	199	239	212	245	301	193	116	84	139	194
DN	μ g/1	200	228	566	244	322	471	281	326	401	445	617	403	350		DN	μ g/1	210	235	276	299	384	258	375	344	412	432	285	372	374		DN	μ g/1	162	181	509	245	219	339	312	226	217	391	391 179	248
TN	μ g/1	474	525	492	504	581	000	456	510	220	268	748	029	561		TN	μ g/1	543	538	456	524	819	721	524	525	255	613	798	725	595		TN	μ g/1	409	321	332	456	419	542	498	652	404	974	612	208
Pheo	μ g/1	12.0	8. 1	7.5	12. 4	5.1	6.5	6.9	3.1	5.0	3.0	2.6	0.8	6. 1		Pheo	μ g/1	13.3	8.7	4.8	7.6	5.8	6.3	7.6	4.1	6.0		4.5	1.4	6. 1		Pheo	μ g/1	3.9	1.2	1.0	2.9	1.5	9.1	1.6	J. 4	4 y .	. r	3.6	3.2
Chla			20.1		19. 7	32.5	25.3	23.2	31.6	16.4	11.4	14.2	40.4	25.3		Chla	μ g/1	53.7	19.9		14.4	25.2	19.6	19.3	33.5	16.6	20.0	19.5	51.6	25.6		Chla	_			6.3		12.3	22.9	9.5	2.2	24. S	59.9	39.4	24.6
D-COD	mg/1	3.3	2.3	1.6	2.8	J. 6	7 ·	۰ : د	1.5	1.1	1.2	1.2	2.2	1.8		P-C0D	mg/1		2.3				1.2	1.0	1.7	1.2	1.3	1.3	3.1	1.7		P-C0D	mg/1	2.0	0.7	6.0	F. 9	.; «		- i.	4. o	0 0	. r.		2.3
D-C0D	mg/1	3.8	4.1	3.5	8.0	4.0	ა. ი		3.2	3.1	2.7	2.1	2.6	3.4		D-C0D	mg/1	3.6	4.2	3.5	3.9	4.2	3.8	3.9	3.2	3.0	3.1	2.5	2.6	3.5		D-C0D	mg/1	2.8	3.0	4.	3	. S. S.	 	0.4.0	0.0	0 6	2.6	2.6	3.2
COD	mg/1	7. 1	6. 4	5.2	9.9	. i. 6	 	ο.	4. 7	4.2	4.0	3.3	4.8	5.2		COD	mg/1	7.0	6.5	4.5	5.4	5.4	5.0	4.9	4.8	4.2	4.4	3.9	5.7	5. 1		COD	mg/1	4.8	3.7	4.	5.7	 	4; 1	v. c	× 1	0 K			5.5
SS	mg/1	10.0	11.7	4.7	6.4	6.4	4 9	4.4	8.9	6.2	5.6	5.4	8.0	9.9		SS	mg/1	10.5	11.5	4.5	3.7	5.4	5.5	4.7	7.6	6.1	5.7	5.2	9.3	9.9		SS	mg/1	5.6	3.0	2.2	.4 .5	4.5	 		12.1	10.6	10.6	8.3	6.0
C 1	mg/1	2900	3200	3800	2900	3300	7200	1,000	1300	1300	1100	099	570	2100		C 1	mg/1	3300	3400	4000	4000	3500	3000	1900	1300	1400	1300	1000	780	2400		C 1	mg/1	10000	10000	12000	9400	10000	0,890	0019	3200	9100	4400	5000	7700
EC	mS/cm	6.6	11.0	12.9	10.0	11. 2	20, c	0.0	4.6	4.9		2.4	2. 1	7.4		EC	mS/cm	11.4	11.5	13.3	13.5	11.9	10.1	6.6	4.8	5. 1	4.6	3.7	2.8	8.3		EC	mS/cm	30.8	32.3	36.0	29. 1	31.3	20.5	2	11.3	16.7	1 2 2	15.9	23. 4
Hd		9.1	8.4	8.0	6.8	. r		× .		7.9	7.9	7.6	8.6	8.2		Hd		9.0	8.4	7.9	8.2	7.9	7.6	7.7	8.4	7.8	7.9	7.6	8.7	8.1		Hd		8.5	8.1	∞ ∞ •	. o.	×. 4	× 0	× 0	2.5	o ∝ 4 m	0 00	- &	8.5
DO	mg/1	6.6	8	8. 4	12.0	7.5	ο ·	χ, ά 4. ι	10.5	11.2	12.4	11.7	12.8	10.0	四	DO	mg/1	9.4	8.3	7. 4	7. 1	6.0	5.8	6. 1	10.0	10.9	12.3	12.0	12.3	9.0	P 17-	DO	mg/1	9.0		න : න	9. 4	9.5			13.2	11.0	2	12. 5	10.4
型	Ç	12.1	17.0	22.3	26.8	29.0	20.0 20.0	23.5	16.7	8.4	5.1	7.8	7.4	16.9	引 下層	水温	$^{\circ}$	12.2	16.9	22.0	25.8	28.9	27.3	23.6	16.8	8.5	5.2	7.0	7.4	16.8	型		Ç	12.3	17.3	22.2	26.7	30.0	26.5	24.2	20.0	10.9 8.3	0 0	8.1	17.5
7		田	町		皿 1	× 0	Щ.	円 円 つ	Ψ.				Я	年平均	宍道湖	7		A		田	皿	田					H			年平均	中			田		円口	Į.	Щ 1	T I	Ę I	Щ П			3月	平均
														年																#		1													サ

表2 宍道湖・中海の水質調査結果(その2)

中海 下層

D-Si mg/1	0.	1.	1.7	1.	1.	<u>.</u>	1.	1.6	1.	1.1	1.2	1.	1.4			D-Si	mg/1	1.1	1.	1.	2.	Ι.	1.		J.	Τ.	2.			1.9		D-Si	mg/1											1.6	
D-Fe	ì		0.0										0.0			D-Fe	mg/1										0.0			0.0		D-Fe	mg/1											0.0	
D-Mn	0.0	0.0	0.2	0.2	0.0	0.4	0.2	0.2	0.0	0.0	0.1	0.0	0.1			D-Mn	mg/1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		D-Mn	mg/1											0.0	
P04-P	4.1	9.0	9. 4	42.9	91.8	185.6	84.6	77.0	10.9	0.7	6.6	0.7	43.6			P04-P	μ g/1	3.4	3.2	2.0	1.4	41.0	31.3	2.9	0.0	2. 4	0.5	0.0	0.5	7. 4		P04-P	μ g/1	3.0	3.4	5.7	65.3	69.0	146.3	95.0	9. 1	8.0	0.4	0.2	4
PP 9/1	18	18	22	25	29	58	16	15	29	23	15	17	21			PP	μ g/1	23	19	16	35	39	24	40	101	27	∞ ;	61	77	31		ЬЬ	μ g/1	22	18	20	31	27	42	27	11	36	36	15	- 7
DOP	9	13	20	16	16	19	22	15	11	10	11	7	14			DOP	μ g/1	7	∞	16	20	17	11	25	12	14	11	L3	, a	14		DOP	μ g/1	6	10	18	22	12	21	33	12	Ξ	12	თ <u>თ</u>	,
DP	1	22	29	28	108	202	106	92	22	11	18	8	28			DP	μ g/1	11	11	18	21	28	42	58	12	17	Ξ:	4 5	n i	21		DP	μ g/1	12	14	24	87	81	167	128	21	19	12	10	
TP	28	40	52	84	137	233	122	107	52	34	33	25	79			TL	μ g/1	34	31	35	99	97	99	89	113	44	19	35	32	52		TP	μ g/1	34	32	44	118	107	209	156	31	22	48	25	00
N03-N	10	21	0	2	12	4	9	64	23	38	53	40	23			N03-N	μ g/1	-	4	2	က	7	18	(7	27		158	1 3	24		N-80N	μ g/1	-	11	-	က	∞	1	1	15	18	2 1	25	- 0
N02-N	60	∞	0	10	41	∞	26	16	12	2	9	5	12			N02-N	μ g/1	-	2	0	0	0	က	0	-	_	თ -	4 -	٠,			N02-N	μ g/1	-	4	0	0	41	0	4	∞	12	0 0	0 C	3 0
NH4-N	41	99	5	42	94	353	253	193	77	53	157	128	122			NH4-N	μ g/1	6	2	က	4	∞	25	∞ (∞ ;	13	വ വ	. <u>-</u>	= (6		NH4-N	μ g/1	10	32	2	75	22	315	321	89	59	က ၊	2 2	0 1
PN	92	83	113	115	117	130	46	34	134	150	40	61	92			PN	μ g/1	197	82	101	119	151	165	167	689	174	41	10.1 20.5	coc	195		PN	μ g/1	156	119	132	135	113	202	107	89	213	201	128	077
DIN	55	94	2	28	147	364	285	273	112	96	217	172	157			DIN	μ g/1	11	10	2	7	16	46	6	11	16	101	171	CI	35		DIN	μ g/1	12	48	9	78	104	316	326	91	29	4 6	33	61
DON 9/1	111	126	160	166	146	237	182	140	150	159	176	131	157			DON	μ g/1	167	201	164	233	188	182	245	213	148	113	102	104	183		DON	μ g/1	170	179	152	208	179	216	235	163	123	133	186	ET.
DN 11 9 11	166	220	166	224	293	602	467	413	262	255	393	304	314			DN	μ g/1	178	211	169	240	204	228	254	224	165	213	372	147	217		NO	μ g/1	182	226	158	286	283	533	561	254	182	138	219	011
TN L	242	303	279	339	410	731	513	448	396	405	432	365	405			TN	μ g/1	375	293	271	359	355	393	421	912	339	254	929	004	413		TN	μ g/1	338	346	290	421	396	734	899	322	395	338	347	001
Pheo	2.7	1.7	1.4	2.1	1.8	24.0	6.0	2.0	3.2	2.9	2.6	2.3	4.4			Pheo	μ g/1	2.7	2.3	0.8	2.3	1.4	3,3	0.9	0.4	4.8	0.3	9 6	0.0	1.9		Pheo	μ g/1	2.5	3, 5	2.7	3.6	2.0	30.8	15.1	2. 1	3.7	 8	2.7	0.0
Chla	8.6	5.3	4.8	4.3	7.2	27.3	8.5	0.9	14.8	23.2	5.3	3.3	9.9			Chla	$\mu g/1$			5.2	4.7	9.5	16.4	7.2	136. 2	16.6	5.4	18.1	1.07	22.6		Chla	μ g/1	15.1	7.6	7.9	3.9	7.5	27.7	17.1	9.9	22. 7	23.4	12.0	1.07
P-C0D	0.5	0.4	9.0	8.0	6.0	1.0	0.7	9.0	1.1	1.3	0.5	0.7	0.8			P-C0D	mg/1	1.2	0.7	0.7	1.1	1.1	0.7	1.0	6.3	2.5	0.7	ν. α	6.7	1.6		P-C0D	mg/1	0.8	0.5	0.7	9.0	9.0	1.4	0.9	0.5	1.7	2.5	1.0	0 ,
D-C0D	1.8	2.0	2.6	2.3	2.3	2.5	1.7	1.7	1.7	1.7	1.5	1.2	1.9			D-COD	mg/1	2.4	2.9	2.8	3.4	2.7	2.7	4.0	3.6	2.9	2.3	2, c	0.7	2.9		D-COD	mg/1	2.2	2.8	2.7	2.4	2.4	2.5	2.3	2.3	2.5	2.0	.i. ~	- · · ·
COD	2.3	2.4	3.2	3.2	က၊		2. 4	2.3	2.8	2.9	2.0	1.9	2.7			COD	mg/1										0 °			4.5		COD	mg/1	3.0	ი. ი	3.4	2.9	3.0	3.9	3.2	2.8	4.2		2, 4	į.
S S	3.8	3.1	3.4	3.4	5.7	3.0	2.4	3.7	4.9	4.8	3.6	3.0	3.8			s S	mg/1	5.5	2.2	1.9	3.8	3.1	2.4	2.1	17.2	6.3	.i. «	ر. ا	J. C.	4.5		s s	mg/1	3.9	e.	2.8	12.0	2.5	3.6	2.6	2.9	7.4		2. r 8. 4	
C 1	15000	16000	15000	15000	14000	14000	15000	14000	13000	13000	15000	15000	15000			C 1	mg/1	11000	12000	13000	10000	12000	10000	6700	4800	10000	7700	0110	0400	9500		C 1	mg/1	12000	13000	14000	14000	13000	13000	12000	10000	12000	12000	13000	00077
E C	45.2	45.7	45.3	44.0	42.6	39. 5	39.8	36.8	35.9	34.6	39.2	38.2	40.6			ЕС	mS/cm	34.8	36.9	39.1	32.5	37.1	28.9	19.8	14.9	58.9	21.7	1.02	10.0	27.7		ЕС	mS/cm	37.8	39. 7	41.7	42.4	38.7	36.5	33.4	28.6	32.3	32.7	35.4	0.10
$^{ m hd}$	8.0	7.8	7.9	7.9	7.9	2.8	8.0	7.9	8.0	8.1	7.8	7.8	7.9			Ηd											က			8.4		Ηd		8. 2	7.9	7.9	7.6	7.9	7.8	8.0	8.0	8.0	0 %	7.9	
DO 1	5.8	3.5	1.8	1.1	2.0	0.4	2.1	1.6	4.8	5.3	3.8	3.9	3.0		Min	DO	mg/1	9.0	7.9	7.8	7.4	6.4	6.4	9.6	12.9	11.1	12.7	12.	1.61	9. 7	TLIP m	DO	mg/1	7.6	6.2	3.1	0.5	3.2	8.0	1.0	5.8	8.8	တ်ဖ	2.5	
洪。		15.3	19.0	22. 3	27.6	29. 2	25. 4	21.5	15.1	11.2	11.5	9.8	18.3	-		英頭	္စ	12.0	16.8	22. 4	26.8	29.3	26.8	23.9	16.9	10.8		o o	0.0	17.3	<u></u>	水調	Ç	12.3	16.3	20.5	23.7	28.5	29. 5	25.9	19.5	14.8	~ i ∞ ;	10.5	2 0
	4月	5月	6月	7月	8 月	6 月	0	11月	12月	1月	2月	3月	年平均	-	本压			4 A	5月	6月	7月	8月	9月	10月	11月	12月	1 H	K 12 C	L 0	年平均	本			4月	5月	6月	7月	8月	9月	0	П	12月	1月	23月	5 1

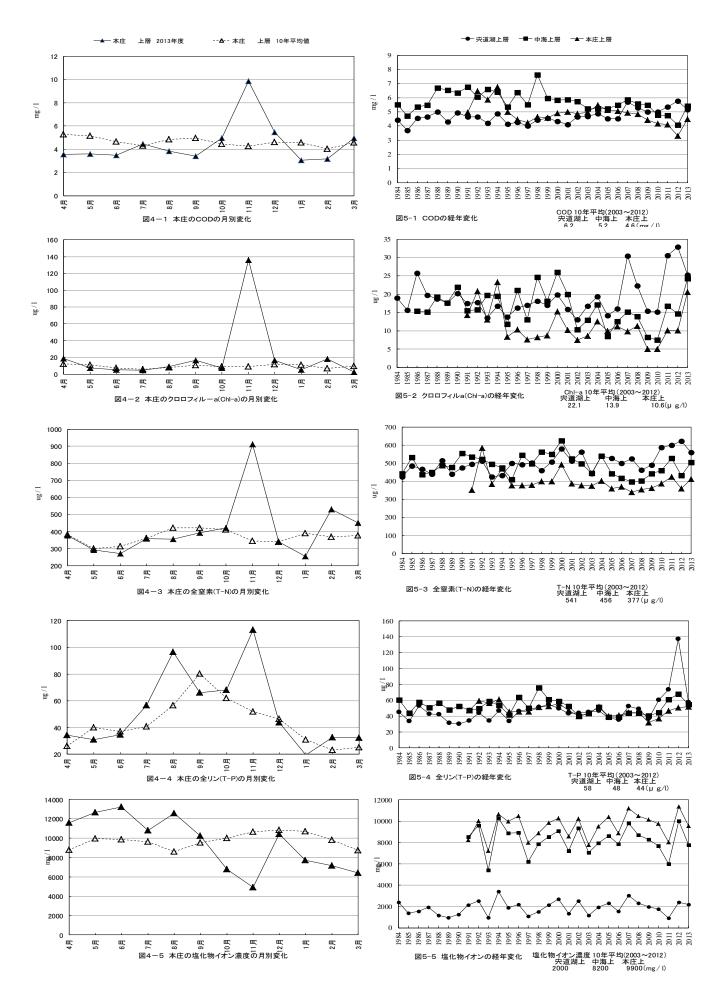


表 3 2013 年度、月平均気温、降水量の推移(松江地域)

П		気温			降水量	
月 	2013年度 (℃)	平年値(℃)	差 (℃)	2013年度 (mm)	平年値(mm)	差(mm)
4 月	11. 9	12. 9	-1.0	154.0	109.4	44.6
5 月	18.0	17. 5	0.5	51. 5	134.6	-83. 1
6 月	22.8	21.3	1.5	178.0	189.8	-11.8
7 月	27.5	25. 3	2.2	262.0	252.4	9.6
8月	28. 2	26.8	1.4	248.5	113.7	134.8
9 月	22.9	22.6	0.3	262.0	197.9	64. 1
10月	18.6	16.8	1.8	280.5	119.5	161.0
11月	11.3	11.6	-0.3	148.0	130.6	17.4
12月	6. 1	6.9	-0.8	201.5	137.6	63.9
1月	4.6	4. 3	0.3	209.5	147.2	62.3
2 月	6.6	4.7	1.9	108.0	121.9	-13.9
3 月	8.5	7.6	0.9	187.0	132.6	54. 4
年平均(気温) /計(降水量)	15. 6	14. 9	0. 7	2290. 5	1787. 2	503.3

なお、平年値は松江気象台における1981年~2010年までの30年間の平均値である